EEE532: Semiconductor Device Theory II

Instructor: Dragica Vasileska

Phone: (480) 235-5993 E-mail: Vasileska@asu.edu

<u>Textbook:</u> S. M. Sze and Kwok K. Ng, *Physics of Semiconductor Devices* – Third Edition, John Wiley & Sons, Inc., 2007. (I will not follow closely this book. I will provide you appropriate reading material when needed.)

Prerequisite:

EEE531 or equivalent. Knowledge of quantum mechanics (quantum confinement, tunneling, etc.) is desired but not needed.

Objectives:

Gain deeper and broader knowledge of semiconductor device physics and device operation principles by covering special topics.

Topics covered:

- 1. Heterojunction Devices: Heterojunctions Fundamentals, Heterojunction Field Effect Transistors (HEMTS), Heterojunction Bipolar Transistors (HBTs) (3 weeks)
- 2. Charge-Coupled Devices (1.5 weeks)
- 3. Memories (1 week)
- 4. Thin film Transistors (0.5 weeks)
- 5. MESFETs and JFETs (1 week)
- 6. Optoelectronic Devices: Photodiodes, Light Emitting Diodes, Lasers, and Solar Cells (3 weeks)
- 7. Microwave Transistors, Tunnel Diodes, IMPATT's, Transferred-Electron Devices (3 weeks)
- 8. Nano-Electronics Devices (1 week)

Course requirements:

Grading will be based upon successful completion of 6 - 8 projects. The projects will involve MATLAB programming, use of Silvaco simulation software and use of nanoHUB tools.

Grades:

95 ≤ A+ ≤ 100; 90 ≤ A < 95; 85 ≤ A- < 90; 80 ≤ B+ < 85; 75 ≤ B < 80; 70 ≤ B- < 75; C < 70