EEE598 ST: Serial Links

Instructor: Dr. Hongjiang Song hongjiang.song@asu.edu

Credits: 4 hours
Prerequisites:
- Basic VLSI analog circuits
- Basic VLSI digital circuits

Grading:
- Homework 15%
- Midterm Exams 40%
- Final Exam 25%
- Project 20%

Course Description:
This course was originally known as the VLSI High-Speed I/O Circuits. It covers various VLSI circuit design topics of VLSI high-speed I/O (or broadband) circuits including the theoretical basis, design, modeling, and validation techniques. This course is intended for first or second year graduate students and the objective is to build a practical knowledge of the VLSI high-speed I/O circuits and the applications to various industry high-speed I/O circuit standards, such as LVDS, USB2.0, 1394, S-ATA, PCI-Express, Mipi, etc. There will be weekly (bi-weekly) HW and design projects. CAD tools such as CADENCE, MATLAB will be used during the class.

Text book:

Reference:
- Selected journal/conference papers on VLSI High-Speed I/O Circuits that support covered topics

Lecture Topics:
- High-Speed I/O Circuit Fundamental
 1. High-speed I/O standards, trends and fundamental design challenges
 2. Basic I/O prototype and SFG models, Basic I/O circuit timing equation
 3. I/O circuit architectures, Common Clock, Forward Clock, and Embedded Clock Signaling
- High-Speed Serial I/O Modeling
 1. Jitter analysis, modeling and link jitter budgeting
 2. Bit Error Rate (BER) analysis and modeling
 3. DRC tracking loop modeling
 4. PLL/DLL/PI modeling
 5. Signal Integrity and Power Delivery
- VLSI High-Speed Serial I/O Circuit designs/implementations
 1. Transmitter circuits
 2. Receiver circuits
 3. Channel, T-line, Automatic Termination and Equalization Circuits
 4. PLL/DLL/PI circuits
 5. Data recovery circuit
 6. Voltage and current references circuits
- Validation Techniques of High-Speed I/O Circuits
 1. TDR & VNA
 2. Jitter & BERT measurement

Disclaimer
This syllabus is to be used as a guideline only. The information provided is a summary of topics to be covered in the class. Information contained in this document such as assignments, grading scales, due dates, office hours, required books and materials may be from a previous semester and are subject to change. Please refer to your instructor for the most recent version of the syllabus.