IFT 511: Analyzing Big Data

Course Syllabus

Instructor: Asmaa Elbadrawy

Email: asmaa.elbadrawy@asu.edu

Phone: 480 727 0550

Office Hours: Virtual over Zoom, by Appointment Only, Time TBA on Canvas Course Page

Course Credits: 3

Course Description

This course covers how data science can be used as tools to analyze large amounts of data for the purpose of extracting business value. Multiple topics are covered with real business examples.

Theoretical Foundation: Foundations of data analytics, converting different problems to data mining tasks & the decision analytic mindset.

Data Mining-Based Data Analytics: Main data mining techniques for analyzing large amounts of data such as predictive & descriptive methods. Understanding & preparing the data for analysis. Proper training of a model & avoid overfitting. Proper evaluation of the analysis results considering issues such as class imbalances, long tail distributions. Systematic implementation and deployment of the data mining process.

Statistical Methods for Data Analytics: Data distribution, standardization, p-value hypothesis testing. Statistical models used for understanding how the data was generated & their applications to business problems.

Prerequisites

• Students are expected to have decent knowledge of a programming language that is used for data analytics; specifically, either Python or Scala.

Textbooks

- Required: *Data Science for Business* by F. Provost and T. Fawcett, ISBN-13: 978-1449361327, O'Reilly Media; 1st edition (August 27, 2013)
- Recommended but not Required: *Mathematical Statistics with Applications*, 7th edition, by Wackerly, Mendenhall, and Scheaffer, Brooks/Cole, Cengage Learning, 2008.

Software Tools

- Anaconda Python 3.+: It contains multiple libraries that will be used in the course such as pandas, sklearn, numpy & scipy.
- Databricks community edition: A free cloud-based cluster environment with an installation of Spark & access to its machine learning library
- SVM-Light: A Support Vector Machine Library used for Classification and Regression

Tentative Schedule

Module	Topic	Objectives	Assessments
Module 1	Programming	1.1. Lists	Lab 1
Week 1	Foundation:	1.2. Dictionaries	Lab 2
	Python Basics	1.3. File Handling	
		1.4. Data Frames in Pandas & Spark	
		1.5. Difference between using data frames	
		vs simple file handling	
Module 2	Theoretical	2.1. Why Big Data Analysis?	Assignment 1
Week 2-3	Foundation:	 Challenges, Goals & Examples 	Assignment 2
	Principles of	2.2. The Data Mining Process	Assignment 3
	Data Analytics	2.3. The Data Analyst Mindset	Assignment 4
		2.4. Converting Business Problems to Data	
		Mining Tasks	Lab 3
		2.5. Other Data Analytics Techniques	
Module 3	The Data Mining	3.1. Types of Datasets	
Week 4	Process: Data	3.2. Types of Attributes	Assignment 5
	Understanding	3.3. Missing Values	Assignment 6
	& Preparation	3.4. Noise	
		3.5. Conversion Rules for attributes	Lab 4
		3.6. Different input formats for different	Lab 5
		machine learning libraries - Most common formats: CSV, libSVM,	
		JSON	
Module 4	The Data Mining	4.1. Correlations & Proximities	Assignment 7
Weeks 5-7	Process:	4.2. Different Classification Models	Assignment 8
VVCCR3 3 7	Classification	Decision Trees	Assignment 9
	Models	Decision Hees Decision Boundary Classifiers &	Assignment 10
	Wiodels	SVM	7.551gmment 10
		 Using linear boundary 	Lab 6
		models for ranking	Lab 7
		 Minimizing/Maximizing 	Lab 8
		Objective Functions	Lab 9
		• ANN	
		4.3. Interpretability & Prediction Power of	Midterm Quiz
		each of the models listed above	

Module 5	The Data Mining	5.1. Models ability to generalize	Assignment 11
Week 8	Process: Fitting	5.2. The problem of overfitting & its	Assignment 12
	the Model	reasons	7 1001.6
		5.3. Proper model training to avoid	Lab 10
		overfitting	
		Cross Validation	
		Parameter Optimization	
Module 6	The Data Mining	6.1. Problems with simple evaluation	Assignment 13
Week 9	Process:	metrics such as accuracy	Assignment 14
	Evaluating	6.2. Confusion Matrix	
	Classification	6.3. Expected Value	Lab 11
	Models	6.4. Precision & Recall	
		6.5. AUC	
		6.6. Modeling & Evaluation of unbalanced	
		data	
		6.7. Long-Tail Distributions in data	
Module 7	The Data Mining	7.1. Regression Problem	Assignment 15
Week 10	Process:	7.2. Linear Regression	
	Regression	7.3. Logistic Regression	Lab 12
	Models	7.4. Time Series Regression	
Module 8	The Data Mining	8.1. Computing Similarities	Assignment 16
Week 11	Process:	8.2. Clustering methods for data	
	Clustering	summarization & exploration	Lab 13
	Analysis	8.3. Analyzing the Clustering Results	
		Generating Cluster Descriptions	
Module 9	CRISP: Building	9.1. Automation of the data mining task	Assignment 17
Week 12	the Data Mining	for solving a given business problem	Lab 14
	Pipeline		Lab 15
Module 10	Comparing	10.1. Spark Architecture	Assignment 18
Week 13	Machine	10.2. Spark ML vs Sci-Kit Learn	Extra Credit Lab
	Learning		
	Libraries		
Module 11	Statistical Data	11.1. Bayes Rule	Assignment 19
Weeks 14	Analysis	11.2. Naïve Bayes Classifier	Lab 16

Book Reading

• Each module will contain some required reading. Make sure to read the required text before attempting the module assignment(s).

Exams

- There is one midterm and one final exam.
- Exams are delivered on Canvas and require Respondus lockdown browser & a webcam.

Assignments & Labs

- Students shall submit at least one lab and one assignment every week.
- Assignments are for evaluating student understanding of the concepts.
- Labs are for evaluating student ability to implement and run scripts for performing a given analytical task.
- All assignments and labs are delivered and submitted on Canvas.
- All submissions should be in a **single** *doc/docx* document. **NO** zip files, or multiple files. Submitting multiple files may result in obtaining a partial grade since graders expect they will be grading one file.
- Assignments must be **neat** and **organized**. If the person grading your homework cannot read and evaluate the answer, points will be deducted, possibly resulting in a zero grade.
- Most labs include code writing. Students MUST include the items below for their code submissions to be accepted:
 - 1. Code, copied and pasted as text
 - 2. Screenshots of the code. Screenshots MUST show a username as well as date and time of when the screenshot was taken.

Late Submissions

- Late submissions will be deducted 10% for each extra day. For example, if the assignment was submitted within 1-day after the due date, grade will be deducted by 10%. If it is submitted within the second day after the due date, grade will be deducted 20%, and so on.
- Emergency exceptions: I understand that life happens! If a student needs more time to finish their work due to some emergency, they need to contact the instructor PRIOR to the due date. The instructor is willing to work with the student and provide flexible due dates if the student maintains good communication and the instructor evaluates the provided reasons as valid.

Grading

- All assignments & labs combined are worth roughly 80% of the course grade.
- Midterm and Final Exams combined are worth roughly 20% of the course grade.
- Final grade is computed by totaling the exam and assignment scores with no weighting.

Course Grading				
Based on Points (absolute, fixed, no curve)				
>= 98.0 <= 100.0	A+			
>= 93.0 < 98.0	Α			
>= 90.0 < 93.0	A-			
>= 88.0 < 90.0	B+			

>= 83.0 < 88.0	В
>= 80.0 < 83.0	B-
>= 78.0 < 80.0	C+
>= 70.0 < 78.0	С
>= 60.0 < 70.0	D
< 60.0	E

Course Objectives

- 1. Understand theoretical foundations of the Principles of Data Analytics
- 2. Understand how data science is used to address business problems.
- 3. Understand the data mining process and its main components: Data Understanding & Preparation, Predictive Data Modeling, Fitting the Model, Clustering Analysis and Model Evaluation
- 4. Understand different predictive methods and algorithms that can be used for classification and regression models. This includes decision trees, SVM models, ANN, Nearest Neighbor methods, linear & logistic regression.
- 5. Develop analytical thinking skills required for proper model evaluation & apply them to real business problems.
- 6. Understand the basics of statistical data analysis, and how to apply it to real business problems.
- 7. Code and run Python scripts for conducting data analytics tasks, properly evaluating their results, and automating the data mining process.

Student Learning Objectives

- 1. Use data mining to address business problems and to demonstrate ability to convert a given business problem into a set of data mining tasks.
- 2. Systematically apply the data mining process and its main components to real business problems.
- 3. Understand the basics of predictive and descriptive data mining methods and how they can be systematically applied to solve business problems.
- 4. Understand how predictive methods can be used for ranking purposes in certain problems.
- 5. Understand the problem of overfitting, how to avoid it and how to apply cross validation strategies for proper model training.
- 6. Understand how different models vary in their interpretability, performance (such as predictive ability) and their tendency to overfit.
- 7. Use model evaluation tools beyond accuracy such as confusion matrix, expected value and AUC to properly evaluate models.
- 8. Write python scripts for automating the data mining process for a given problem. This should include data preparation & transformation, proper model training, evaluation & selection.
- 9. Use statistical data analysis utilizing probabilities, standardization methods and p-value hypothesis testing to analyze real business problems.

- 10. Demonstrate understanding of advance analytical techniques such as using ensemble methods to improve model performance.
- 11. Demonstrate understanding of advanced data analytics techniques used for analyzing special types of data such as text & GIS data.

Communicating with the Instructor

- The instructor is reachable by email. However, since there are multiple online & on campus sections of each course, students need to include course & section details in their email subject. Mainly, students must include:
 - o Course Title
 - o Section type: Online or On campus
 - o For on campus students: Include class days (MW vs TT) or the section number.

If the student does not include this information in the email, the instructor may not be able to identify information necessary to address the student's request, resulting in communication failure. That is, the instructor won't be able to respond to the student's email.

General Course Protocol & Policies

Academic Integrity

Students in this class must adhere to ASU's academic integrity policy, which can be found at https://provost.asu.edu/academic-integrity/policy). Students are responsible for reviewing this policy and understanding each of the areas in which academic dishonesty can occur. In addition, all engineering students are expected to adhere to both the ASU Academic Integrity Honor Code and the Fulton Schools of Engineering Honor Code. All academic integrity violations will be reported to the Fulton Schools of Engineering Academic Integrity Office (AIO). The AIO maintains record of all violations and has access to academic integrity violations committed in all other ASU college/schools.

No Generative AI Use Permitted

In this course, all assignments must be completed by the student. Artificial Intelligence (AI), including ChatGPT and other related tools used for creating of text, images, computer code, audio, or other media, are not permitted for use in any work in this class. Use of these generative AI tools will be considered a violation of the ASU Academic Integrity Policy, and students may be sanctioned for confirmed, non-allowable use in this course.

Plagiarism

Plagiarism is a violation of academic integrity and is not taken lightly. Plagiarism includes, but is not limited to:

- 1. Copying from other sources without including proper referencing.
- 2. Copying from other sources with changing a few words here and there, without including references.

- 3. Copying whole paragraphs as is from external sources, even if they are referenced. If the student must copy a sentence as is, the sentence must be included between quotes with proper referencing to original source(s).
- 4. Copying from other and previous student's assignments.

If two assignment papers are identical, both will be marked as plagiarized. If one student claims that other students copied his/her work without consent, the claim will not be acceptable since it cannot be validated. It is the student's responsibility to protect their work.

Any submission with a similarity score above 15% is subject to close examination for possible plagiarism.

Plagiarism Penalty

- 1. First time a student work is marked as plagiarized: the student will receive a zero in the assignment
- 2. Second time a student work is marked as plagiarized: the student's final grade will be reduced down by one grade letter. That is, an A will be reduced to a B, a B will be reduced to a C, etc.
- 3. Third time a student work is marked as plagiarized: the student will receive an E grade in the course and will be reported to the dean of students.

Copyright

All course content and materials, including lectures (Zoom recorded lectures included), are copyrighted materials and students may not share outside the class, upload to online websites not approved by the instructor, sell, or distribute course content or notes taken during the conduct of the course (see <u>ACD 304–06</u>, "Commercial Note Taking Services" and ABOR Policy <u>5-308 F.14</u> for more information).

You must refrain from uploading to any course shell, discussion board, or website used by the course instructor or other course forum, material that is not the student's original work, unless the students first comply with all applicable copyright laws; faculty members reserve the right to delete materials on the grounds of suspected copyright infringement.

Policy against threatening behavior, per the Student Services Manual, SSM 104-02

Students, faculty, staff, and other individuals do not have an unqualified right of access to university grounds, property, or services. Interfering with the peaceful conduct of university-related business or activities or remaining on campus grounds after a request to leave may be considered a crime. All incidents and allegations of violent or threatening conduct by an ASU student (whether on- or off-campus) must be reported to the ASU Police Department (ASU PD) and the Office of the Dean of Students.

Disability Accommodations

Suitable accommodations will be made for students having disabilities. Students needing accommodations must register with the ASU Disabilities Resource Center and provide documentation of that registration to the instructor. Students should communicate the need for

an accommodation in sufficient time for it to be properly arranged. See <u>ACD 304-08</u> Classroom and Testing Accommodations for Students with Disabilities.

Harassment and Sexual Discrimination

Arizona State University is committed to providing an environment free of discrimination, harassment, or retaliation for the entire university community, including all students, faculty members, staff employees, and guests. ASU expressly prohibits discrimination, harassment, and retaliation by employees, students, contractors, or agents of the university based on any protected status: race, color, religion, sex, national origin, age, disability, veteran status, sexual orientation, gender identity, and genetic information.

Title IX is a federal law that provides that no person be excluded on the basis of sex from participation in, be denied benefits of, or be subjected to discrimination under any education program or activity. Both Title IX and university policy make clear that sexual violence and harassment based on sex is prohibited. An individual who believes they have been subjected to sexual violence or harassed on the basis of sex can seek support, including counseling and academic support, from the university. If you or someone you know has been harassed on the basis of sex or sexually assaulted, you can find information and resources at https://sexualviolenceprevention.asu.edu/faqs.

Mandated sexual harassment reporter: As a mandated reporter, I am obligated to report any information I become aware of regarding alleged acts of sexual discrimination, including sexual violence and dating violence. ASU Counseling Services, https://eoss.asu.edu/counseling, is available if you wish discuss any concerns confidentially and privately.

Syllabus changes

Any information in this syllabus (other than grading and absence policies) may be subject to change with reasonable advance notice.